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ON FINITE DEFLECTION OF AN EXTENSIBLE CIRCULAR
RING SEGMENT

R. P. NORDGREN

Shell Development Company, Houston, Texas

Abstract-The classical elastica is applied to the finite deflection of a segment of an extensible circular ring
with clamped ends under a centrally directed concentrated force at the midpoint about which symmetry pre­
vails. Numerical results are presented for rings subtending angles of 90° and 14'7°. A solution obtained by
the theory of shallow rings shows excellent agreement with the exact results for the 14'7" case. Agreement
with experiment is satisfactory for both angles.

INTRODUCfION

THE FINITE deflection of a circular ring segment (arch) with clamped ends under a
centrally directed concentrated force at the midpoint (Fig. 1) is of both theoretical and
techrii~al interest.· Van Wijngaarden [1] gives an analysis and numerical results for a
semicircular inextensible ring with deflection symmetric about the midpoint, and this case
is also treated by Frisch-Fay [21 who uses the classical elastica For a shallow extensible
ring, Gjelsvik and Bodner [3] have studied nonsymmetric as well as symmetric deflection
by energy methods. Also, experimental findings are reported in [1] and [3].

p

FIG. 1. Undeflected beam.

The present paper applies the classical elasticat to the problem for symmetric deflec­
tion of an extensible ring segment subtending an angle y. The problem is reduced to the
solution of a transcendental equation in elliptic integrals, and numerical results are
presented for y = 90° and y = 14'7°. By the theory of shallow beams, a solution in
elementary functions is also obtained which for y = 14-7° predicts the central force to

* For example, such rings are used in their deflected states as springs with negative spring constants in
combination with ordinary springs in seismic instruments.

t Numerous applications of the elastica appear in the literature. References are cited in [2,4] and the revieW
article [7} and more recent applications can be found in [8-lOl
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within 0·5 per cent of the exact solution at the same midpoint deflection. The theoretical
central force is within 10 per cent of experimental values reported here for y = 90°
and in [3] for y = 14'7".

ANALYSIS

The analysis is based on the classical Bernoulli-Euler theory of flexure with Hooke's
law relating tension and extension The constitutive equations for plane deflection can be
written as ([4] pp. 394,401)

M = B(K-Ko), B == EI,

T= EAs,

(la)

(lb)

where M, T, Ko, E, A, and I denote stress couple, tension, initial curvature of the centroidal
axis*, Young's modulus, cross-sectional area, and second moment of area, respectively;
the latter four are taken constant. The curvature K and strain s of the deformed central
axis are defined here by

dO
K = ds'

ds-ds'
s =

ds

(lc)

(ld)

where sand s' are the arc lengths along the central axis from a specific point in the
deformed and undeformed states, respectively, and 0 is the slope angle of the central axis.
It should be noted that (ld) may also be written as

(
dS-dS')

s = ds' (l-s),

where the first factor on the right-hand side is an alternative definition of strain; however,
the difference is immaterial for s ~ 1. When (la) and (lc) are combined with the equations
of equilibrium for beams under a force resultant R applied at the ends, the following
differential equation for 0 results ([4] p. 401):

d20
B ds2 +R sin 0 = 0, (2a)

where 0 is measured from the axis x of a rectangular Cartesian coordinate system x, y
with x in the direction of R (Fig. 2). The coordinates satisfy the geometrical equations

dx dy. 0
ds = cosO, ds = sm . (2b)

The solution of (2) for x, y, and 0 may be accomplished in terms of elliptic functions [4] or
elliptic integrals [2] and takes a different form according to whether or not inflection
points are present The solution curves, known as elastica, were studied by James
Bernoulli and by Euler (see [5]).

• The present analysis and the previous ones [1-3] also may be applied to an initially straight beam which is
first bent to circular form by pure end couples. In this case K o is absent from (lal.
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(3)
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FIG. 2. Left half of deformed beam with notation.

In the present problem, by virtue of symmetry, only one-half of the ring segment need
be considered, and since this half is acted on only by end forces and couples, the plane
deflection curves are portions of elastica Although the initial circular arc is a noninflec­
tional elastica, the inflectional case is found to apply for all except extremely small
deflections·; therefore, the solution will be formulated for this case.

Taking the origin of the x, Y system at an inflection point (Fig. 2~ we can write the
equations of the inflectional elastica as [2,4]

x = j~ ~(~,k) -F(l/J,k)-2E(~,k)+2E(l/J,k)l

JB .8 k·,J.,
Y = -2k licosl/J, sm 2 = sm,!"

k
. a

= sm 2,

(4)

where a is the slope angle at the origin, and F(l/J, k) and E(l/J, k) are incomplete elliptic
integrals of the first and second kind, respectively, of modulus k and unrestricted argument
l/J. The x, Y coordinate system moves as the beam deflects and is related to the fixed
coordinate system x', y', shown in Fig. 2, by the transformation

x' = [X-X(St)] cos {J-[Y-Y(St)] sin{J,

Y' = [x-x(St)] sin {J+ [Y- Y(St)] cos {J,

where {J is the angle between the x and x' axes, and St is the value of S at the left clamped
end By equilibrium and symmetry; and since the ends of the beam are immovably clamped
a distance L apart, we have

P = 2R sin {J,

8(st) = tI- {J, 8(S2) = - {J,

X'(S2)- x'(St) = !L,
* For such small deflections the linear theory of circular rings should be adequate.

(5)

(6)

(7)
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where P, Y, and S2 are, respectively, the magnitude of the concentrated central force,
the opening angle, and the value of s at the midpoint of the beam The deflection at the
midpoint, measured from the initial circular are, is given by

[) = !L tan h- y'(S2)' (8)

By equilibrium (Fig. 2)

T = -Rcose,

and by (1b, c) we have

(1 +A
2L

;: cos e) ds = ds', A = ±J~,

which, when integrated from s = S1 to s = S2 with the aid of (2b), yields

L2R l yL
S2- S1+ [X(S2)-X(S1)].1.2-

B
=~.

SIn2"Y
(9)

According to (9), results for an inextensible beam can be obtained by setting il. = 0
in the equations which follow.

By (3) and (6) it follows that

c/>(Sl) = mn+( -1)'" arcsin [k- 1sin! (iY-P)] ,
c/>(S2) = nn -(-It arcsin [k- 1sin !PL

where m and n take integer values and

(10)

n .[ n-2 < arCSIn ] :::;; 2'

It is easily shown that the arguments of the arcsin functions in (10) lie in the interval
-1, + 1, provided that

Equations (3), (4), and (9) lead to

F(c/>2,k)-F(c/>1,k)+il.2A 2G(c/>1'c/>2,k)- ~Y~ = 0,
SIn"!Y

where

G(c/>l' c/>2' k) = F(c/>1, k)- F(c/>2, k) - 2E(c/> l' k)+ 2E(c/>2, k),

c/>1 == c/>(Sl), c/>2 == c/>(S2)' A== Lj~,

and by (7)

(11)

(12)

For given values of Y and it, (10) and (12) can be solved numerically in the range
(11) for Pas a function of k with specific m and n. With Pknown, the central force and
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midpoint deflection are given by I (5) and (8) in the nondimensional form

PL2

- = 2A2 sin{3
B '

227

()
L = ! tan ty - A -lG(<Pl' (!>l, k) sin {3 +2kA -1 [cos <P2 - cos 4>d cos {3, (13)

and by (2), (3), and (13) the curvature K of the beam is

K A sin to( cos <P
K o sin ty (14)

where Ko is the curvature of the undeflected circular ring. Numerical results will be
discussed in the last section.

SHALLOW BEAMS

If the beam is shallow, i.e. if y ~ 1, then the slope dy'jdx' is expected to be small,
and the approximation

d
2
y' [ (dy')2J-t d

2
y'

K=- 1+ - ~-dx,2 dx' dx,2

may be invoked, in which case (1) and moment equilibrium (Fig. 2) yield

d2 ,

Bd:2 +Qy' = M(Sl)+!PX', (15)

where Q is the compressive force parallel to the x' axis (Fig. 2~ For Q > 0, the general
solution of (15) is

(16)

where

The constants j1., C 1, and C2 are determined by the conditions

as

di(L)y'(O) = dx'"2 = 0,

1
C1 = 21] (y - p),

dy' (0) = ty
dx'

(17)

(18a)

(18b)
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By (4), we have

and since (Fig. 2)

(9) is equivalent to

R. P. NORDGREN

Q P
R=--=--

cos f3 2 sin 13'

fL/2J[ (d/)2] I LQ P ,(L) hL
o '1 + dx' dx + 2EA + 2EA Y 2' = sin ty ,

which for shallow beams can be approximated by

1 fLl2(d ')2 Q P (L) 2

L 0 d~' dX'+EA+EALY'"2 =;4'
Substitution of (16) and (18) into (19) leads to the quadratic equation

where

a = _1_[311-sin 11-4 sin !11+tan2 {I1(11-8in 11-8 sin p,)]
1611

'2 [11 1 1 1+A 11 4: - 2 tan 411J '

b = ..L[2(1+2cost11) sin !11-I1-sin 11]
811

+1.12'1Y tan ±11,

(19)

(20)

and A is defined at (12~ Thus, for each value of '1, (20) will give two real values of p, pro­
vided that b2 -4ac > O. Then, by (16) and (18) the central force and midpoint deflection
are given by

PL2

- = Pl12
,

B

£5 1
L = ty -±P+ 211 (y + 2p) tan-ln (21)
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The foregoing solution can also be applied for Q < 0 merely by transforming the trigono­
metric functions to hyperbolic functions. Furthermore, as Q -+ 0 it can be shown that
the foregoing solution approaches the polynomial solution in x' obtainable directly from
(15) for Q = o.

08r-------------------,------------------,..-----.
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FIG. 3. f3 versus (X (in radians) for y = 90° and A = 0; the first number for each section is the number
of inflection points on the half-beam

50,-------------------------------------r-,

40

30

X THICKNESS =0.0152 INCH
o THICKNESS =0.0151 INCH

WIDTH =0.75 INCH
CIRCULAR ARC LENGTH =14

3

00 0 °° Ox x x x xO x° x xx
Ox

ox

5

o A
o

8
T

0.20 0.25 0.30 0.35

FIG. 4. Central force versus midpoint deflection for y = 90° and .Ie = 0 (solid line).
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DISCUSSION OF NUMERICAL AND EXPERIMENTAL RESULTS

Numerical results were obtained on a digital computer with the subroutines for
elliptic integrals given by Hofsommer and van de Riet [6].

For the case y = 90° and }, = 0 (extension neglected) Figs. 3 and 4 show, respectively,
f3 versus r:x and the relation between central force and midpoint deflection in nondimen­
sional form as obtained from (10) through (13~ In Fig. 3 the arrows indicate increasing
midpoint deflection, and for each section of curve the number of inflection points on
the half-ring and the corresponding values of m and n in (10) are given. At the transition
points C and D in Figs. 3 and 4 inflection points occur at the ends of the half-ring. The
transition from noninflectional elastica to inflectional elastica occurs at point A in Fig. 4
for r:x = nand 0/L = 1·90 x 10- 3, which is small, as stated previously.* Typical deflection
curves for the left half-beam appear in Fig. 5 corresponding by number to points on the
force-deflection curve of Fig. 4. Inflection points in Fig. 5 are indicated by circles.

0.2
2

-0.1

3

o 0.1 0.2
x'
L

0.3 0.4 0.5

FIG. 5. Deflection curves of the left half-beam for y = 90" and ;, = 0 corresponding by number to
load points in Fig. 4; circles denote inflection points.

* The discussion by Frisch-Fay ([21 Jl 145) of the various changes in character of the deflection curve for
a semicircular beam (1' = 180°) applies for y = 90° and 14·7° and appears to apply for 0 < l' :::; 180°.
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FIG. 6. Maximum curvature /((s·) and minimum curvature /((S2) versus midpoint deflection; /(0 is
curvature in circular state for P = ;; = o.

The relation between central force and midpoint deflection was also computed for
y = 900 including the effect of extension with A. = 0·00095 (as in the experiment reported
here~ The difference in central force between this case and the inextensional case (A. = 0)
for the same midpoint deflection is less than 0·3 per cent over the range of Fig. 3.

Figure 6 shows curvature ratios for y = 900 and A. = 0 as obtained from (14) at the
point of minimum curvature 8 = 82 and at the point of maximum curvature 8 = 8*

(¢ = n), plotted versus midpoint deflection. These curves can be used to calculate stress
due to bending which predominates over direct stress in general.

Similar computations were carried out for y = 14.70 including extension with
..1. = 0·00159 (as in the experiment of [3]) and neglecting extension (A. = O~ The central
force-midpoint <;leflection relations appear in Fig. 7 and show a maximum difference
of 5 per cent in PL21B between the two cases. Thus, the effect of extension is more pro­
nounced for y = 14.70 than for y = 900

• The force-deflection relation for y = 14.70 and
A. = 0-00159 according to the shallow-beam solution (20) and,(21) agrees with the exact
solution to within 0·5 per cent in PL 2IB over the range of Fig. 7. In the shallow-beam
solution trigonometric functions apply for 0 < oiL < 0,0533, and hyperbolic functions
apply for oiL> 0'0533, with b2 -4ac = 0 at oiL = 0-0249, 17 = 9·01.

Experimental resultst shown in Fig. 4 were obtained with beams of thickness 0·0151 in.
and 0·0152 in., width 0·75 in., and circular arc length 14 in. (A. ~ 0-00095) by varying the
midpoint deflection and measuring the central force with a spring gauge. Nonsymmetric
deflections were suppressed by clamping and restraining a central portion of the beam.

t The experiments were conducted under the direction of M M Robinson and R R Luke of Shell Develop­
ment Co.
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x EXPERIMENTAL VALUES OF GJELSVIK
AND BODNER (ref.3l
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FIG. 7, Central force versus midpoint deflection for')' = 14'7°, ,l = 0 (dashed line), and ,l = (}OO159
(solid line),

The discrepancy between theoretical and experimental central force for the same mid­
point deflection is less than 10 per cent and is believed to be due largely to incomplete
suppression of nonsymmetric deflection. The experimental results reported in [3J for a
beam with y = 14·1° and .Ie = (}OO159 are also shown in Fig. 1. In this experiment slight
nonsymmetric deflection occurred which may account for the difference with theory.
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Resume--L'elastica classique est appliquee a la flexion (deformation) finie d'un segment d'un anneau cir­
culaire extensible a extremites bridees sous une force concentree centralement dirigee au point milieu oil la
symetrie predomine. Des resultats numeriques y sont presentes pour des anneaux soutendant des angles de
90· et 14,7°, Une solution obtenue avec la theorie pour anneaux peu profonds indique une conformite excellente
avec Ies resultats exacts pour Ie cas de 14,7·, La conformite avec I'experience est satisfaisante pour Ies deux
angles,

Zusammenfassung-Die klassische Theorie der Elastika ist angewendet auf die endliche Biegung eines Segments
cines dehnbaren kreisfOrmigen Ringes mit gekJemmten Enden bei einer zentral gerichteten konzentrierten Kraft
an dem Mittelpunkt an welchem Symmetrie vorliegt. Zahlemmassige Ergebnisse sind prasentiert fUr gegentiber­
liegende Ringwinkel von 90· und 14,r. Eine LQsung, erhalten mit der Theorie von flachen Ringen zeigt
ausgezeichnete Obereinstimmung mit den genauen Ergebnissen fUr den 14,7° Fall. Obereinstimmung mit
dem Versuch ist zufriedenstellend fUr beide Winkel.

AficTpaKT-KnacclI'oJ.eCKali TeopHli :)JIaCTHKH npHMeHlIeTcll npH KOHe'iHOM H3fH6amm: cerMeHTa paCTlI­
)KHMOrO Kpyrnoro Konb~a c 3allCaThlMH KOHl\aMH no,ll; HarrpaBneHHoi!: K ~eHTpy KOHl.(eHTpHpoBaHHoit
cHnoil: B cpe,ll;HeM nyHKTe c npe06na.n;aIOweil: cHMMeTpHeit. ilpe.n;cTaBJIeHbI 'lHCnOBbie pe3ynbTaTbi ,lI;nll
yrnoB, no.n;nHpaIOUlHX Konb~a B 90° H 14.7°. PeweHHe, nony'leHHOe npH TeopHH IIOnepXHOCTHblX KOnel.(
nOKa3b1BaeT npeKpacHoe cornaCOBaHHe C TO'iHbIMH pe3ynhTaTaMH ,lI;JIll cny'lall B 14-7°. COfJIaCO­
BaHHOCTb C )KCnepHMeHToM Y,lI;OBJIeTBOpHTeJlbHa .n;nll 060HX yrROB.


